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LElTER TO THE EDITOR 

Complete devil’s staircase in an Ising model with competing 
interactions 

T h i a  Tom6 and S R Salinas 
lnstituto de Fisica, Universidade de S ~ O  Paulo, Caixa Postal 20516, 01498 SHo Paulo, SP, 
Brazil 

Received 3 December 1987 

Abstract. An Ising model on a regular Cayley tree, with competing ferro- and antiferromag- 
netic nearest-neighbour interactions, can be formulated as a discrete two-dimensional 
mapping. We use this mapping to obtain sequences of modulated phases, at low tem- 
peratures, associated with complete devil’s staircases. The fractal dimensionality of the 
staircases increases with temperature. At higher temperatures the incommensurate phases 
may occupy regions of finite measure of the phase diagram. 

An Ising model on a regular Cayley tree with nearest-neighbour competing interactions 
has been proposed to mimic the behaviour of spin glasses (Morita 1983, Horiguchi 
and Morita 1983, 1984). In a recent publication, de Oliveira and Salinas (1985) 
formulated this problem as a two-dimensional discrete mapping and performed some 
calculations, in the mean-field or infinite coordination limit, to obtain the corresponding 
phase diagrams. The lack of disorder precludes the appearance of a true spin-glass 
phase. However, the frustration introduced by the competing interactions turns out 
to be responsible for the existence of a sequence of modulated structures, at low 
temperatures, in a region of the phase diagram otherwise occupied by a spin-glass 
phase. In this letter, we report a detailed study of the devil’s staircases corresponding 
to this sequence of modulated phases. In particular, we calculate the Hausdorf7 
dimensionality, 0, associated with the intervals which are not occupied by commensur- 
ate structures. At low temperatures, as D < 1, the devil’s staircases are complete. At 
higher temperatures, however, as D = 1, the incommensurate phases occupy regions 
of finite measure in the phase diagram. 

Let us consider a nearest-neighbour spin$ Ising model on a regular Cayley tree of 
coordination z. In a simple version of the Morita model, each site is connected to n 
neighbours by bonds of type 1, with an exchange interaction J1 = +J,  and to z - n 
neighbours by bonds of type 2 ,  with exchange J2 = -J.  In the infinite coordination 
limit, we make z + 03, n 03 and J -+ 0, such that the parameters p = ( 2 n  - z ) / z ” ’  and 
j = J z ” ~  remain finite. The phase diagrams are drawn in terms of the temperature T, 
in units of j / k B ,  where k ,  is Boltzmann’s constant, and the parameter p ,  which gives 
an indication about the ferro- or antiferromagnetic character of the overall interactions. 
According to de Oliveira and Salinas (1985), in this limit the recursion relations are 
given by 
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and 

where the subscript 1 labels a shell of the tree. The variables m, and q, are given in 
terms of mi” and mi2’,  which are associated with the effective fields induced on the 
spins of the innermost shells by bonds of types 1 and 2 respectively. 

The phase diagram obtained from (1) and ( 2 )  is shown in figure 1. The paramagnetic 
and the ferromagnetic regions are associated with the trivial one-cycle fixed points, 
m* = 0 and m* = f m o  # 0, respectively. The antiferromagnetic region is associated 
with a two-cycle fixed point. The commensurate phases are associated with periodic 
fixed points of the mapping and are thus characterised by a rational wavenumber q, 
where q/27r is in the interval [0, f]. A plot of the wavenumber q against the parameter 
p, at a given temperature, shows a collection of steps of different widths and behaves 
as a devil’s staircase (see figure 2). The steps of this staircase correspond to the regions 
occupied by the commensurate phases. As there is an infinite number ofthese structures, 
it is always possible to increase the accuracy of the calculations to find additional 
plateaux in the interstices between any two wider steps. It remains to be shown whether 
there is still room of finite measure for the presence of incommensurate phases. 

At the paramagnetic border the critical wavenumber varies smoothly with the 
parameter p. It is then possible to show that, at least immediately below this border, 
the incommensurate phases occupy finite regions of the phase diagram. To search for 

P 
Figure 1. Global phase diagram in the limit of infinite coordination number. Paramagnetic 
( P ) ,  ferromagnetic ( F ) ,  antiferromagnetic ( A )  and modulated (M) regions are shown. In 
the M region only a few main commensurate phases are shown. The F and A regions 
extend up to the broken line overlapping the M and P regions. The four dots are tricritical 
points. The interval a (  T I ,  from p = 0 to the border of the ferromagnetic phase, is shown 
for T = 0.5. 
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P 
Figure 2. Devil’s staircase for T = 0.2. Only plateaux with widths Ap 3 0.006 are plotted. 
The insert is a magnification showing plateaux with A p  3 0.0006. 

the possible existence of incommensurate phases at lower temperatures, we have 
numerically determined, at a given temperature, all the commensurate structures 
associated with plateaux wider than a certain minimum length. Let us consider the 
interval a ( T ) ,  shown in figure 1 for T = 0 . 5 ,  and calculate the total length, S ( E ) ,  
occupied by all the commensurate phases associated with a plateau wider than E. The 
difference s( E )  = a( T )  - S ( E )  corresponds to an interval which is occupied by either 
incommensurate phases or by commensurate phases associated with plateaux of widths 
smaller than E. In the limit E ’0, we have S ( E ) / E  - ( 1 / ~ ) ~ ,  where D is the Hausdorff 
dimensionality of the set of intervals which are still remaining after the subtraction of 
the commensurate plateaux (see, for example, the calculations of Jensen et a1 (1983)  
for the devil’s staircase of the circle map and the calculations of Yokoi and de Oliveira 
(1985)  for the chiral Potts model). In figure 3 we show some results of these calculations 
for different temperatures. The slope of the log-log plots gives the values of D, which 
are plotted in the inset as a function of temperature. For E < all numerical data 
are on a straight line, and the devil’s staircases are self-similar within the accuracy of 
our calculations. At low temperatures, as D < 1, the staircases are complete and there 
is no room of finite measure for incommensurate phases. The complementary set to 
the commensurate intervals may be interpreted as a Cantor set of fractal dimensionality 
D. 

As shown in the inset of figure 3, the fractal dimensionality increases with tem- 
perature. This non-universal behaviour of D has also been found by Yokoi and de 
Oliveira (1985)  in the case of the chiral Potts model. For T > 0 . 5 ,  however, the 
calculations are much harder, since the widths of the plateaux associated with the 
commensurate phases become much smaller. It is then quite difficult to find a precise 
value for the temperature above which D = 1, the devil’s staircases become incomplete 
and the incommensurate phases occupy an interval of finite measure. To confirm the 
presence of commensurate and incommensurate structures, we have also performed 
detailed calculations of the Lyapunov exponents associated with the mapping for 
different values of the parameters. Unlike the case of the analogue of the A N N N I  model 
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on a Cayley tree (Yokoi et a1 1985), we have not found any evidence of the presence 
of strange attractors. 
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References 

de Oliveira M J and Salinas S R 1985 J. Phys. A: Math. Gen. 18 L1157-61 
Horiguchi T and Morita T 1983 J. Phys. A: Math. Gen. 16 361 1-6 
- 1984 J. Stat. Phys. 35 355-65 
Jensen M H, Bak P and Bohr T 1983 Phys. Rev. Lett. 50 1637-9 
Morita T 1983 Phys. Lett. 94A 232-4 
Yokoi C S 0 and de Oliveira M J 1985 J. Phys. A: Math. Gen. 18 L153-7 
Yokoi C S 0, de Oliveira M J and Salinas S R 1985 Phys. Reo. Lett. 54 163-6 


